1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | import numpy as np import matplotlib.pyplot as plt import cmath as cm from angles import r2d,normalize,d2r from scipy.stats import multivariate_normal """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" Title: Gerchberg-Saxton-Algorithm with 2 and 4 Phase-Discretisation Author: Dominik Doellerer The Algorithm computes iterative the phase-shift for a given output image as shown in "A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures" in Optik Vol. 35 No. 2 (1972) by R. W. Gerchberg and W. O. Saxton Today, its not easy to machine a continous phase-shift into a material. The program computes a discrete phase-shift by simply dividing into 2 or 4 parts. The Project is under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License. This means you are free to copy the model or adapt it for non-commercial purposes. """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" IMAGE_FILE = '/YOURFOLDER/IMAGE.png' # input image INTERATIONS = 5 # iterations of the gerchberg-saxton algorithm default 30 NUMBER_OF_PHASES = 2 #1 no discretisation 2 discrete Phases or 4 discrete Phases SOURCE = 'gauss' #amplitude of lightsource 'gauss' or 'constant' FAC_MU = 4 # width of the target gauss-curve if in use 1 equals normal, higher than 1 flattens the curve DISCRETE_2PHASE = '/YOURFOLDER/DISCRETE_2PHASE.jpg' DISCRETE_4PHASE_1 = '/YOURFOLDER/DISCRETE_4PHASE_1.jpg' DISCRETE_4PHASE_2 = '/YOURFOLDER/DISCRETE_4PHASE_2.jpg' DISCRETE_4PHASE_3 = '/YOURFOLDER/DISCRETE_4PHASE_3.jpg' DISCRETE_4PHASE_4 = '/YOURFOLDER/DISCRETE_4PHASE_4.jpg' CONTINUOUS_PHASE = '/YOURFOLDER/CONTINUOUS_PHASE.jpg' #=======================math============================================== def ampl(x): return np.sqrt(x.real*x.real+x.imag*x.imag) def absdiff(array1,array2): #returns the absolut difference of two arrays in form of a new array diff = np.zeros_like(array1) for i in range(len(diff)): for j in range(len(diff[1])): diff[i][j]= array1[i][j]-array2[i][j] plt.figure() plt.imshow(diff) plt.colorbar() plt.title("Diff") return diff def gaussian(x, mu,sig): return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.))) def gauss(sizey,sizex,fac_mu): x = np.linspace(0, sizex, sizex) y = np.linspace(0, sizey, sizey) X, Y = np.meshgrid(x, y) pos = np.dstack((X, Y)) mu = np.array([sizex/2, sizey/2]) cov = np.array([[sizex*fac_mu,0],[0, sizey*fac_mu]]) rv = multivariate_normal(mu, cov) Z = rv.pdf(pos) return Z #=======================image============================================== def con2bw(image): image_gray = np.mean(image, -1) image_bw = np.zeros_like(image_gray) for i in range(len(image_gray)): for j in range(len(image_gray[i])): if image_gray[i][j]<0.5: image_bw [i][j]= 0 if image_gray[i][j]>=0.5: image_bw[i][j] = 1 return image_bw def plot_amplitude(im): plt.figure() from matplotlib.colors import LogNorm plt.imshow(np.abs(im), norm=LogNorm(vmin=5)) plt.colorbar plt.title("FFT Amplitude Image") def argand(a): plt.figure() for i in range (len(a)): for x in range(len(a[i])): plt.polar([0,normalize(r2d(cm.phase(a[i][x])),0,360)],[0,abs(a[i][x])],marker='o') plt.title("Phase") plt.show() def plot3D(array): import matplotlib.pyplot as plt import numpy as np np.random.seed(1234) fig = plt.figure() ax1 = fig.add_subplot(111, projection='3d') A = array-3.0 x = np.array([[i] * len(array[1]) for i in range(len(array))]).ravel() y = np.array([i for i in range(len(array[1]))] * len(array)) z = np.zeros(len(array)*len(array[1])) dx = np.ones(len(array)*len(array[1])) dy = np.ones(len(array)*len(array[1])) dz = A.ravel() ax1.bar3d(x, y, z, dx, dy, dz) #=======================GSA============================================== def gsa(source,target,n): a = np.fft.ifftshift(np.fft.ifft2(np.fft.fftshift(target))) phase_a = np.zeros_like(target) b = np.complex128(np.zeros_like(target)) phase_c = np.zeros_like(target) c = np.complex128(np.zeros_like(target)) d = np.complex128(np.zeros_like(target)) retrieved_phase = np.zeros_like(target) for z in range(n): for i in range(len(source)): for j in range(len(source[i])): phase_a[i][j] = cm.phase(a[i][j]) b = np.multiply(source, np.exp(1j*phase_a)) c = np.fft.ifftshift(np.fft.fft2(np.fft.fftshift(b))) for i in range(len(source)): for j in range(len(source[i])): phase_c[i][j] = cm.phase(c[i][j]) d = np.multiply(ampl(target), np.exp(1j*phase_c)) a = np.fft.ifftshift(np.fft.ifft2(np.fft.fftshift(d))) print(z) for i in range(len(source)): for j in range(len(source[i])): retrieved_phase[i][j] = normalize(r2d(cm.phase(a[i][j])),0,360) return retrieved_phase #=======================quantisation============================================== def storeSeperate(retrieved_phase,n_sep): plt.figure() if(n_sep==1): plt.imsave(CONTINUOUS_PHASE,retrieved_phase, cmap='gray') plt.imshow(retrieved_phase) if(n_sep==2): phase = np.zeros_like(retrieved_phase) for i in range(len(retrieved_phase)): for j in range(len(retrieved_phase[i])): if( abs(retrieved_phase[i][j]) > 180): phase[i][j]=1 else: phase[i][j]=0 plt.imshow(phase) plt.imsave(DISCRETE_2PHASE,phase, cmap='gray') if(n_sep==4): phase1 = np.zeros_like(retrieved_phase) phase2 = np.zeros_like(retrieved_phase) phase3 = np.zeros_like(retrieved_phase) phase4 = np.zeros_like(retrieved_phase) for i in range(len(retrieved_phase)): for j in range(len(retrieved_phase[i])): if( abs(retrieved_phase[i][j]) > 270): phase4[i][j]=1 elif(abs(retrieved_phase[i][j]) > 180): phase3[i][j]=1 elif(abs(retrieved_phase[i][j]) > 90): phase2[i][j]=1 else: phase1[i][j]=1 plt.imshow(phase1) plt.imsave(DISCRETE_4PHASE_4,phase4, cmap='gray') plt.imsave(DISCRETE_4PHASE_3,phase3, cmap='gray') plt.imsave(DISCRETE_4PHASE_2,phase2, cmap='gray') plt.imsave(DISCRETE_4PHASE_1,phase1, cmap='gray') plt.title("saved discretisation") #=======================main============================================== image = plt.imread(IMAGE_FILE).astype(float) plt.figure() plt.imshow(image) plt.title("original") target = con2bw(image) if(SOURCE=='gauss'): source = gauss(len(target),len(target[1]),FAC_MU) else: source = np.ones_like(target)/(len(target)*len(target)) plt.figure() plt.imshow(source) plt.title("source") retrieved_phase = gsa(source,target,INTERATIONS) plt.figure() plt.imshow(retrieved_phase) plt.title("retrieved phase / no discretisation") #=======================holores============================================== out = np.zeros_like(source) if(NUMBER_OF_PHASES==2): phase = np.zeros_like(retrieved_phase) for i in range(len(retrieved_phase)): for j in range(len(retrieved_phase[i])): if( abs(retrieved_phase[i][j]) > 180): phase[i][j]=180 else: phase[i][j]=0 holo1 = np.complex128(source) for i in range(len(source)): for j in range(len(source[i])): holo1[i][j]= source[i][j] * np.exp(1j*phase[i][j]/360*cm.pi*2) holo2 = np.fft.ifftshift(np.fft.fft2(np.fft.fftshift(holo1))) for i in range(len(holo1)): for j in range(len(holo2[i])): out[i][j] = ampl(holo2[i][j]) if(NUMBER_OF_PHASES==4): phase1 = np.zeros_like(retrieved_phase) phase2 = np.zeros_like(retrieved_phase) phase3 = np.zeros_like(retrieved_phase) phase4 = np.zeros_like(retrieved_phase) for i in range(len(retrieved_phase)): for j in range(len(retrieved_phase[i])): if( abs(retrieved_phase[i][j]) > 270): phase4[i][j]=1 elif(abs(retrieved_phase[i][j]) > 180): phase3[i][j]=1 elif(abs(retrieved_phase[i][j]) > 90): phase2[i][j]=1 else: phase1[i][j]=1 holo = np.fft.ifftshift(np.fft.fft2(np.fft.fftshift(source*np.exp(1j*(((phase1*90)+phase2*180+phase3*270+phase4*360)/360*3.1415*2))))) for i in range(len(holo)): for j in range(len(holo[i])): out[i][j] = np.sqrt(holo[i][j].real*holo[i][j].real+holo[i][j].imag*holo[i][j].imag) storeSeperate(retrieved_phase,NUMBER_OF_PHASES) if(NUMBER_OF_PHASES==4 or NUMBER_OF_PHASES==2): plt.figure() plt.imshow(out) plt.title("output of discretisation") else: holo1 = np.complex128(source) for i in range(len(source)): for j in range(len(source[i])): holo1[i][j]= source[i][j] * np.exp(1j*retrieved_phase[i][j]/360*cm.pi*2) holo2 = np.fft.ifftshift(np.fft.fft2(np.fft.fftshift(holo1))) for i in range(len(holo1)): for j in range(len(holo2[i])): out[i][j] = ampl(holo2[i][j]) plt.figure() plt.imshow(out) plt.title("output without discretisation") |